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A B S T R A C T

The use of information available in the organizations to understand what good performance looks like has been
proposed for improving the decreased productivity in mine sector. Detailed monitoring has been performed at
the heap bioleaching process in Minera Escondida since the start of the industrial operation in 2006. The huge
industrial data recorded represents an opportunity to raise knowledge about complex bioleaching processes for
improving the technology. A systematic approach using machine learning tools for the analysis of High
Dimensional Feature Space is now being developed to deliver experience-based learning with the aim to serve as
the foundation for optimal production planning and operational decision making, in the presence of inherent
process variations. The construction of a Decision Support System (DSS) is reported, which considers a Real Time
PCR array, a database for data logging and storage, the application of suitable statistical and computational tools
for knowledge acquiring and finally the creation of a system of knowledge translation to transform it into action
by applying recommendations that come to terms with operational limitations. The user can accurately retrieve
data and design similar matches to the historic operation to get, for instance the expected metallurgical per-
formance (such as copper recovery, acid consumption and bacterial activity) and recommendations. The process
followed to construct the base of knowledge of the DSS is discussed.

1. Introduction

The application scenario of copper bioleaching is changing; this is
due to the variable copper price, the new competitive technologies, the
more complex raw materials and the corresponding process require-
ments (low grade, run of mine, size of the heap, water/solution quality,
among others) (Fundación Chile, 2016). In the current scenario of
copper bioleaching, the industrial processes have to deal with growing
uncertainties.

In addition, a steady decline in the mining sector productivity
during the past decade has been reported (Mitchell et al., 2014) and the
described features for the global sector have also been evidenced in
bioleaching operations. The main reasons recognized in the specific
sector of bioleaching are associated to: i) the resources, the sharp de-
crease in the copper grade of the exploited ores (from average 1.7 to
0.5% in the last 25 years in Chile) and the increasing complexity of the
exploitable ores (> 60% of chalcopyrite); ii) the operation, a high
turnover of workers means a reduction of the knowledge residence time
in the organization and of the operational experience to best optimize

resources by controlling the key factors.
The bioleaching process at Escondida Mine has been in operation

since 2000 at pilot scale and since 2006 at commercial scale, and is a
good example of the observed trends. Escondida Mine is located 170 km
South-East of Antofagasta at 3100m above sea level. The bioleaching
heap was built using run-of-mine (ROM) ore and air is supplied through
blowers. The ore was initially (year 2006) characterized as low-grade
containing approximately 0.60% (w/w) total Cu, consisting of chalco-
cite (40%), covellite (10%) and chalcopyrite (50%). During the last two
years, the grade of the ore allocated for the bioheap process has de-
creased down to 0.5–0.3% (w/w) total Cu and it is mostly constituted
by chalcopyrite (reaching up to 80% of total copper content). The heap
dimensions are 2000m wide by 5000m long, and it is divided into
operational units called strips, each of 125m wide by 2000m long and
18m height (Fig. 1). The operational design considers up to 7 levels of
18m for each strip and, when the heap is operating with more than one
level, the irrigation solution passes through the different levels until
reaching the bottom of the heap (Pregnant Leach Solution -PLS- sam-
pling points). The heap process operates using one irrigation solution
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(raffinate) directed from the solvent-extraction plant, usually feeding
between 12 and 18 ore strips at a steady-state regarding to stacking and
irrigation.

Some key solutions have been proposed to face the productivity
challenges in the mining sector. Among them are the development of
new technologies and the use of information and data available in the
organization to understand what good performance looks like. The
greatest copper heap bioleaching processes are operating in Chile and
there is a big opportunity of obtaining insights from the industrial data
(Fundación Chile, 2016) (Mitchell et al., 2014). In this context, the
process for creation, systematization, transfer and management of
knowledge is relevant to facilitate efficient operation.

Decision Support System (DSS), which consists of a database, model
base and knowledge base, is visualized as an integrated approach to
bring this understanding from the industrial data for improving the
efficiency of mining processes. (Reyes et al., 2014; Tejeda et al., 2013;
Zhang et al., 2011).

Mathematical models have been developed to determine the impact
of key parameters to facilitate the heap design and control (Watling,
2006). Critical assessments of the significant, public-domain, heap
leach models has concluded that most of the efforts have focused in
developing predictive models (Watling, 2006) addressed on specific
subprocesses in isolation (the chemistry, the microbiology or the hy-
drodynamics, among others) and have failed to account for the inter-
actions between those processes (Watling, 2006). In addition, the
models do not consider the complexity of the current operations. Ac-
cording to our knowledge, models constructed based on statistical in-
dustrial data and empirical knowledge of the commercial heap-bio-
leaching process have not been reported.

There is intense research in knowledge discovery defined as the non-
trivial extraction of implicit, previously unknown, and potentially
useful information from data (Small & Medsker, 2014). A recent review
of approaches for Information Extraction (IE) (Small & Medsker, 2014)
highlighted a group of current automatic tools for knowledge extraction
and representation (Machine learning and Data mining). Those tech-
niques are based on the concept of automatic learning from data and
they use different kinds of algorithms which match the three types of IE
work: 1) Unsupervised learning, the model is constructed from a group
of input data without any kind of feedback (clustering: identifying
which one of a small number of cluster centroids best represents the
input), 2) Supervised learning, the model counts on input data and
output data that are useful to build a function, and it learns a parametric
map that can directly compute a representation for new points f
(in)= out and 3) Reinforcement learning, the model learns from a series
of enforcements and penalties (Russell & Norvig, 2003).

Information is the raw material for building mathematical models
based on IE techniques. Usually data is described by the volume, the
veracity, the variety and the velocity. In bioleaching operations there is

an important volume of data obtained directly from the mining plant.
The data describe the different processes involved in the Cu extraction.
Depending on each process, the information is acquired at different
frequency and stored for several years. Then, the available data are
characterized because of their high dimensionality (the curse of di-
mensionality) what have a negative impact on the model learning
(Small & Medsker, 2014). Considering those characteristics, the use of
Big Data techniques -which couples information extraction methods
and large amounts, variety and velocity of the data- were incorporated.
In such cases data preprocessing, through representation, transforma-
tion and projections is used in order to obtain better results.

Data mining methods have been already applied to get knowledge
from the industrial data produced in Escondida Mine (Demergasso
et al., 2011b; Demergasso et al., 2011a; Soto et al., 2009; Soto et al.,
2013). Some of the knowledge inferred from the industrial data has
been validated by lab scale tests (Davis-Belmar et al., 2012).

The construction of the knowledge base of a dynamic DSS by the
application of IE tools and the gathered expert knowledge of bio-
leaching is reported.

2. Material and methods

2.1. Process description and data availability

A summary of the bioleaching process at Escondida Mine is shown
in Fig. 1. Actually, strips in the heap are operated on levels 1, 2, 3 and 4.

Daily measurements of physico-chemical parameters (pH, Eh, tem-
perature), of solution chemistry (Cu, Fe, acidity, sulfate, ammonium,
among others), of operational parameters (solution flow, volume in
ponds and reservoirs of solutions like PLS and raffinate, addition of acid
and activity of blowers, among others) were recorded. The information
about the initial mineralogy of the resources loaded in each strip of the
heap (91 strips) was provided by chemical and SEM-based quantitative
mineralogical analysis (QEMSCAN). The data gathered included per-
centages of total Cu (TCu), total Fe (TFe) and soluble Cu (SC), per-
centages of Cu bearing ore content, chalcocite (CSP-Cs), covellite
(CSPeCv), chalcopyrite (CSP-Cpy) and Cu oxide ores (CSP-ox, mainly
brochantite) and percentage of pyrite (Py). In addition, the data in-
cluded the content of each mineralization type (M1, M2 and M3) in the
material stacked in each strip. The mineralization types were defined
taking into account the lithology, the alteration and the acid con-
sumption. M1 enclosed mineralization in porphyries and breccias with
quartz–sericitic alteration; M2 came from a body of andesites with
chlorite, sericite and clay alteration, and it had the highest acid con-
sumption; M3 included mineralization in andesites, porphyries and
breccias with quartz, sericitic and potassic alteration. Samples of PLS
(from each ore operating strip), common PLS, and raffinate have been
monthly sampled since June 2006 to study the composition of the

Fig. 1. Flowchart of the copper bioleaching process at Minera Escondida.
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microbial community by Quantitative Polymerase Chain Reaction (Q-
PCR) and the kinetics of ferrous iron consumption in flask tests at dif-
ferent temperatures (25 °C and 40 °C) (Demergasso et al., 2011b;
Galleguillos et al., 2008; Remonsellez et al., 2009). In addition, since
2014, RNA samples have been collected to determine genetic expres-
sion of the microbial population (Galleguillos et al., 2013; Marín et al.,
2017). The recorded data were systematically stored in a database. For
long time, empirical knowledge of the process has been drawn up as
reports and presentations which were registered. Those documents
have been manually computed by experts in the fields of heap con-
struction, inoculation, acid management, heat and fluxes management,
solvent extraction and related processes, according to the professional
knowledge and scheduling experience they have accumulated over
several years.

The architecture defined for the DSS consists of three layers (Fig. 2).
Each layer was implemented using the programming language Java1

and is composed of a specific set of libraries and frameworks that are an
important part of the system's integration:

• Human-Computer Interface. This layer is responsible for interacting
with administrators, users and analysts (experts) of the system
through a graphical interface on a Web server. The selected server
was WildFly 11.0.02 and the implementation was done in Java
language. In addition, an MVC (Model, view and controller) Fra-
mework (Bucanek, 2009) based on”Ruby on Rail” 5.1.43 and Ruby
2.4.14 language was used.

• Engine Inference. This layer has the responsibility of receiving user
queries and delivering logical responses from a set of rules obtained
from the analysis of data and expert knowledge by means of an
inference engine. For this, the Java programming language was used
for the implementation of the modules, the Drools Framework 7.55

(Workbench with KIE Execution Server) and the programming lan-
guage DRL for the definition of the rules of the expert system.

• Persistence Layer. The backup of all the industrial data of the
bioleaching heap at Escondida mine is installed in a database
Postgres 9.6.6 This layer has the responsibility of storing and sup-
plying the data generated in the plant as well as storing the results
obtained from the inferences of the DSS. One advantage of the
software is its capability of saving and updating knowledge accu-
mulation.

The DSS is composed of five reasoning modules: 1) Impact of mi-
neralogy/mineralization in the metallurgical performance, 2) Microbial
activity and copper recovery, 3) Estimated temperature inside the heap,
4) Marker genes for critical issues and 5) Inoculation/reinoculation
requirements (Fig. 2).

Here, the construction of two of the reasoning modules of the DSS
will be described. Researchers, IT enterprises, experts and engineers
involved in the decision making process have participated in this de-
velopment.

2.2. Construction of DSS modules by applying CRISP-DM

For constructing the rules and the knowledge base, expert knowl-
edge and knowledge discovered in industrial databases were applied.
CRISP-DM was the methodology, among the ones availables, (CRISP-
DM (Chapman et al., 2000) and SEMMA (Inc., S. I, 2013)) for IE from
the database (Small & Medsker, 2014) oriented to the building of a DSS

(Azevedo & Santos, 2008; Shafique & Qaiser, 2014). The CRISP-DM
model defines a clear separation between the requirements stablished
by the client, by the expert users (Business Knowledge) and by the
personnel associated with the analysis of the data (Knowledge of the
data). In addition, this methodology has good documentation support
and is constantly updated with new revisions and extensions (IBM,
n.d.). This methodology has also been used in the knowledge acquisi-
tion process in other mining processes (Azevedo & Santos, 2008;
Shafique & Qaiser, 2014).

The main conclusion of the phase of business requirements, es-
tablished by the Crisp-DM methodology, for” Impact of the mineralogy/
mineralization and the Microbial activity and copper recovery” mod-
ules was that the objective of both is to improve the efficiency of the
copper recovery by heap bioleaching (Fig. 3).

In the phase of data comprehension, the data required for the
construction of each module were identified. For the building of module
1” Impact of mineralogy/Mineralization in the metallurgical perfor-
mance”, the global summary of the mineralogy/mineralization com-
position of each strips given by MEL was used (Fig. 2). The summary
collected the information of 91 strips that have been operated since
2006. More than 50,000 records obtained, also since 2006, which in-
cludes daily, biweekly and monthly obtained data systematized and
stored in a database, were used for the building of the module” Mi-
crobial activity based on oxidation” (Fig. 3).

Preprocessing of the data considers ensuring correctness and re-
ducing redundancy and extraneous data. Records with anomalous va-
lues were analyzed and discarded (e.g. variables numbers outside the
expected ranges, null data, data with text instead of numeric data,
among others) in agreement with the research team.

Fig. 3 summarizes the approach used for IE which includes un-
supervised learning approaches in a first step (Cluster) and supervised
learning methods (Decision tree learning) in a second step. A proper
selection of the variables to be used in the analyses is relevant in the
next phase for improving the efficiency of the implemented classifiers
and for rule generation mainly when high dimensionality data, such as
the obtained from the bioleaching heap, are available (Davis & Foo,
2016). Correlated variables were discarded and the selection of variable
based on expert knowledge was performed. In addition, the data were
separated based on mineralogical/mineralization characteristics for the
IE process related to module 2. To select the best predictor variables per
group, the wrapper method (Phuong et al., 2005) plus a brute force
search (Robinson & Quinn, 2018) was used.

Data mining and machine learning techniques were applied in the
Modelling phase (Fig. 3). The algorithm for unsupervised learning K-
means was used, including the mineralogical and mineralization vari-
ables as input ones, to find the patterns for strip classification. In ad-
dition, to construct predictive models to describe the oxidation kinetics
for each mineralogical group, the data of each group were used to train
decision trees (supervised learning technique). In the experiments, the
CRT or CART (Classification and Regression Tree) (Robinson & Quinn,
2018) algorithms were used. At the end of these stages, it is possible to
describe the behavior of each mineralogical group (K-means) and the
behavior of the target variables (decision trees).

The rules for each module were constructed, tested and validated
based on the obtained knowledge about the factors that best explain the
variability. The recommendations to tune up those factors come to
terms with operational possibilities at industrial level.

3. Results

3.1. Impact of mineralogy/mineralization in the metallurgical performance

In order to get insights from the industrial data, the following
strategy was designed: i) clustering of the strips based on the miner-
alogical and chemical composition (chalcocite, covellite, chalcopyrite,
pyrite, soluble copper, copper oxide, Fe content, mineralization types);

1 https://www.java.com
2 http://wildfly.org/
3 http://rubyonrails.org/
4 https://www.ruby-lang.org/en/
5 https://www.drools.org
6 https://www.postgresql.org/
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ii) exploring the coincidences between the mineralogical groups and the
profiles of the metallurgical performance of the strips allocated in each
cluster (copper recovery, acid consumption, flow rate, PLS temperature,
Eh, total Fe in the PLS); iii) once the groups were improved and vali-
dated by the occurrence of those relationships from the point of view of
the experts, the rules for strip classification were constructed; iv) the
logic of this module was developed to be able to execute the rules once
the user inputs the case.

3.1.1. Strips clustering based on mineralogy/mineralization
Non-hierarchical clustering classified the leaching strips into five

groups (G1-G5) considering the mineralogical/mineralization char-
acteristics of the material stacked. The main variables selected by the
clustering tool to form the groups were SC, CSP-ox and M2 content
(Fig. 4). Similar clusters were obtained replacing the SC by Py variable
(data not shown). Cluster 1 and 2 are the ones with the lowest (< 3.4%)
and highest (> 19.2%) M2 content, respectively (Fig. 4 and Supple-
mentary Fig. 1). Group 3 is characterized by its high content of SC and
oxide copper ores (CSP-ox≥ 0.18). Groups 4 and 5 have similar M2
content (3,4 < M2 < 19,2) but differ in SC content (> 0.21 and<
0.125%, respectively). In addition, G5 is the cluster with the highest Py
content (> 2.05%, data not shown).

3.1.2. Correlation between clusters based on mineralogy/mineralization
and their metallurgical performance

To validate the classification obtained, the metallurgical perfor-
mance of the clusters were analyzed (Cu recovery, acid consumption,
temperature, total Fe, irrigation flow, among others). The data obtained
from the strip operations were organized into the different groups and
the profiles of the metallurgical parameters of each group were ana-
lyzed and compared. Features such as the effect of the slope when the
strips were located in the border of the heap and significant differences
in the irrigation flow produce distortions in the behavior of some strips
compared to the cluster behavior. Those strips (21) were removed for

further analyses.
The highest copper recovery was obtained in G1 and G2, and the

recovery increased at upper lifts. The lowest copper recovery was ob-
served in G3 the one with the highest content of SC (Fig. 5). The highest
temperature was observed in G5 and G2, the groups with the highest Py
and M2 content (Soto et al., 2013), respectively (data not shown). The
highest Fe supply came mainly from G1 and G5, the groups with the
lowest M2 and the highest Py content, respectively. However this ten-
dency is observed when those strips were stacked at the first or second
lifts of the heap. The decrease in the iron supply in the upper lifts is
supposed to be caused by the precipitation processes and the solution
retention processes (Demergasso et al., 2010) occurring at the depth
profile of the heap (high volume of rocks and low free acid available).

The lowest acid consumption was observed in strips from the G4
with the highest M1 (≥25%) content. The M2 strips consume more acid
(Net acid consumption=Total acid consumption – acid recovered in
solvent extraction process, SX) when those were stacked in the second
lift where the acid strength in the irrigation was higher (Supplementary
Fig. 2), resembling the observed for silicate gangue minerals (Ghorbani
et al., 2016). It is known that the increased gangue dissolution results in
increased solution pH and ionic strength, in decreased iron availability
and potentially in heap permeability (Watling, 2006). That kind of in-
formation was made explicit as an expert recommendations -which
consider the process design- that were implemented in the operation of
the DSS.

From the microbiological point of view the comparison of the bac-
terial activity in the obtained groups also shows differences. An inter-
esting relation between Cu recovery (Fig. 5) and the oxidation activity
(Table 1) of the different clusters was observed, the higher the oxida-
tion activity the higher the Cu recovery (Table 1, Fig. 5). The lower Cu
recovery from G5 compared to G1, in spite of the similar oxidation
activity, can be attributed to the different content of CSP-Cpy (G1 and
G5 median values 0.10 and 0.20%, respectively) in both groups. The
lack of iron oxidation at environmental temperature in the strips of

Fig. 2. Architecture of the actual version of the DSS
for bioleaching operations. The data base collected
the mineralogical composition of each strip (ore and
mineralization type composition), the metallurgical
parameters (acid consumption, copper recovery, iron
recovery), the operational conditions (blowers and
flow rate among others), the physicochemical factors
(pH, Eh, total Fe and Fe II ion concentrations, Cu
concentration, impurity levels, entrained organic
solvent) and microbiological data (specific cell
number determined by Q-PCR, iron oxidation ac-
tivity, expression of marker and housekeeping
genes). The knowledge base collected the decision
rules constructed based on statistical data and em-
pirical knowledge of the process.
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group 3 was attributed to the low sulfide content (pyrite and chalcocite)
and to the high content of oxide ores (Demergasso et al., 2017).

3.1.3. Construction of rules/recommendations/operation
Rules for strip classification. The clustering analysis, the assessment

of the metallurgical performance and the expert knowledge allowed
defining the rules to be set in the knowledge base of the DSS (Fig. 6,
Algorithm 1).

Boundaries. In addition, the boundaries were allowed to be de-
termined by the information gathered in the industrial process. Some of
the provided variables are:

−CSP ox : upper boundary of CSP-ox suitable to be stacked in a strip
(percent of the copper bearing ores in the heap).
H : upper boundary of acid strength for irrigating G2 strips.
Py, Py: Lower and upper boundaries of pyrite content for a strip to
be considered as a source of iron for the system (percent of pyrite

content in the heap) together with M2 content.
M2: upper boundary of M2 for a strip to be considered as a good
source of iron for the system (percent of M2 mineralization content
in the heap) together with the pyrite content.

Recommendations. Based on the classification rules and the
boundary definitions, recommendations for the decision making pro-
cess were constructed, like:

The oxide (CSP-ox) ore content suitable to be stacked in the heap is
less that 0.2%. Material with higher CSP-ox must not be stacked in the
heap or should be mixed in a proper proportion with materials of lower
CSP-ox content.

The acid concentration in the irrigation solution (raffinate) for the
heap should have a strength lower than 7.5 g L−1 to irrigate the strips of
G2 (with predominant M2 mineralization), if it is possible, in order to
avoid unnecessary acid consumption and sulfate accumulation in the
industrial solutions. The same boundary had been established during

Fig. 4. Grid-style layout, with features selected to make up the clusters in the rows and selected clusters in the columns. This view helps to see differences between
clusters not only as compared with the overall data, but also with each other.

Fig. 5. Smoothed fit line computed by means of lo-
cally weighted iterative robust least squares regres-
sion (Gompertz equation) obtained for each group.
This method computes a series of regressions, each
focused on a small area within the plot, and produces
a series of local regression lines that are then joined
to create a smooth curve.

Table 1
Percent of the kinetics oxidation types in each of the mineralogical groups (G1-G5).

T: 25 °C Groups T: 40 °C Groups

Typea 1 2 3 4 5 Typea 1 2 3 4 5

Fast 37% 24% 0% 11% 33% Fast 66% 72% 61% 52% 76%
Normal 53% 62% 38% 52% 58% Normal 23% 23% 13% 10% 17%
Non- Oxidation 11% 14% 62% 37% 9% Non- Oxidation 11% 5% 26% 38% 7%

a The oxidation tests were classified as Fast, Normal, Non-oxidation when it takes up to 10, 20 and more than 30 days to consume 4 g/L of Fe II, respectively.
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the design of the plant.
The strips labeled as the best to supply iron (Py≥ 1.5%,

M2≤ 15%) are relevant to maintain its level in the system. Those strips
are recommended to be stacked in the first two lift of the heap to avoid
iron precipitation and trapping at the deeper zones of the heap (see
Supplementary Fig. 3).

Operations. The user can, for example, manually input the miner-
alogical parameters selected of a strip under irrigation to obtain the
group in which it is associated and to be able to compare the physi-
cochemical parameters, the metallurgical performance and the bac-
terial activity of the present strip with other strips of the same group. In
addition, the user can also input the mineralogical parameters of future
strips, regarding mine exploitation schedule, and the DSS chooses the
appropriate model to predict its behavior. The computing results can be
stored in a database, which can serve as a historical decision making
scheme. A knowledge base management system provides storage,
query, modification, adding, deleting and other operations for the
knowledge. The expert judges how reasonable the computing results
are for the different cases and the updating necessity.

3.2. Microbial oxidation activity of the clusters based on mineralogy/
mineralization

Differences in microbial oxidation activity were found among strips
of mineralogical groups (Table 1). The groups 1 and 5 included an
elevated proportion of fast oxidation tests at 25 and 40 °C (37 and 33%,
respectively, Table 1), while group 3 included most of the tests classi-
fied as non-oxidation at 25 °C (62%) and group 4 at 40 °C (38%). Pre-
viously, low microbial activity has been reported when oxide ore con-
tent was increased in the heap (Demergasso et al., 2017). In this regard,
group 3 contained the highest level of copper oxide ore and also showed
the highest percentage of non-oxidation tests (Table 1).

The highest number of fast oxidation tests, together with the highest
copper recovery (75%) was observed in group 1. Group 2 showed the
second highest copper recovery and included the highest percentage of
normal oxidation tests. Group 5 also contained a high percentage of fast
oxidation tests and its recovery profile was similar to groups 1 and 2
during most of the operation time (400 days).

In spite of the similar proportion of fast oxidation type tests in strips
classified into mineralogical groups 1 and 5, a different distribution of
this type tests was observed in those groups during the progress of the
process. In group 1, most of the fast type oxidation tests occurred
during the first stage before operation day 100, (Fig. 7a), while in group
5, the majority of fast oxidation tests occurred after operation day 100
(Fig. 7b).

In order to extract new knowledge regarding oxidation type test
recorded at 25 °C for mineralogical groups 1 and 5, CRT algorithm was
used. The main parameters influencing the oxidation test type in group
1 (highest copper recovery) were copper recovery and the concentra-
tions of total mesophiles and Acidithiobacillus ferrooxidans. The Fig. 8
(Algorithm 2) shows that non-oxidation tests recorded at 25 °C in strips
belonging to group 1 were completely separated depending on the
percentage of copper recovery, all fast oxidation tests occurred when
copper recovery was higher than 23%. Similarly, most of normal oxi-
dation tests were classified depending on the percentage of copper re-
covery (72%, when copper recovery is lower than 23%) and then the
separation between non-oxidation and normal oxidation tests is de-
termined by the concentration of Acidithiobacillus ferrooxidans (104

cells/mL). Confusion matrix built for the Algorithm 2 showed between
87 and 100 assertiveness percent (Supplementary Table 1).

In this regard, the distribution of oxidation type tests depending on
Acidithiobacillus ferrooxidans concentration is shown in Fig. 9, where
most of normal oxidation occurred at cell concentrations between 103

and 106 cells/mL which contrast with the observed in group 5 (See
Fig. 10).

In group 5, acid concentration, total Fe in irrigation solution and the
cells concentration of L. ferriphilum were relevant parameters to classify
most of normal oxidation tests performed at 25 °C. The decision tree for
oxidation test type was constructed with data of group 5 (86 oxidation
tests, Supplementary Fig. 4). Oxidation tests recorded at acid levels
higher than 2.55 g/L (54 out of 86) were twice separated by total Fe
levels in the irrigation solution (nodes 3,4,7 and 8) reaching 19 normal
oxidation tests at node 8. Then most of the tests of node 8 were re-
corded when L. ferriphilum was higher than magnitude order 6
(2.0× 106 cells/mL), finally sorting out 30% of normal oxidation tests.
Normal oxidation tests recorded at acid levels higher than 2.55 g/L (26
out of 50) were separated by total Fe in the irrigation solution (lower
than 1.5 g/L), to finally sort out 48% of normal oxidation test
(Supplementary Fig. 5, Algorithm 3). Interestingly, more than 70% of
the instances recorded in node 2 (Supplementary Table 2) registered L.
ferriphilum concentration lower than 106 cells/mL.

Therefore L. ferriphilum concentration combined with acid level and
total iron in the irrigation solution can be used to predict approximately
80% of the normal oxidation tests. The content of pyrite in strips of
group 5 was higher than in groups 1 and 2. The higher content of pyrite
can influence the Fe availability for the microbial community.
Differences in Fe availability in bioleaching processes can determine the
predominant species in the process (Boon et al., 1998; Demergasso
et al., 2010; Rawlings et al., 1999). Thus, the higher pyrite content in
strips of group 5 could have favored the fact that L. ferrpihilum, instead

Fig. 6. Classification tree model showing the predicted mineralogy/mineralization types of strips.
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of A. ferrooxidans, was a more important microbiological parameter in
order to predict the oxidation type tests.

3.2.1. Construction of rules
The rules were inferred from CRT Analyses in order to predict the

microbial oxidation activity in strips classified in mineralogical groups
1 and 5 (with elevated copper recovery), and the main factors to de-
termine the occurrence of fast oxidation tests in groups 1 and 5 are cell
concentrations of A. ferrooxidans and L. ferriphilum, respectively.

3.2.2. Boundaries
In addition, the boundaries were allowed to be determined by the

information gathered in the industrial process. Some of the provided
variables are: Atf lower boundary for fast oxidation activity in G1. Lf
lower boundary for fast oxidation activity in G5.

3.2.3. Recommendations
The recommended A. ferrooxidans concentrations in PLS for getting

a fast Fe II oxidation is higher than 104 cells/mL at the starting phase of
the bioleaching process (up to 100 operation days) in strips belonging
to groups 1. Re-inoculation can improve the cell density when it is
lower that this boundary. The advantage of forced inoculation has been
proved in bioleaching tests (Tupikina et al., 2014). In the MEL bio-
leaching system it was proved that the time to get high Eh and a
maximum rate of Cu recovery was decreased after forced inoculation
(Supplementary Fig. 6). The recommended L. ferriphilum concentration
in PLS for getting a fast Fe II oxidation is higher than 103 cells/mL in
strips belonging to G5. A practical approach to increase microbial
concentration in the process is to drive PLS directly to raffinate pond.
To support this action, the DSS possesses a module considering several
parameters to advice what PLS strip would be more suitable for re-
circulating and for how long (module not described in details here).

Fig. 7. Distribution of iron oxidation type tests (25 °C) in mineralogical groups 1 (a) and 5 (b).

Fig. 8. Decision tree generated for oxidation test types (25 °C), based on data from mineralogical group 1. At the first level, copper recovery percentage classifies most
of fast tests. At the second level, concentrations of A. ferrooxidans and mesophiles are able to classify most of normal and non-oxidation tests.
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4. Conclusions

Obtaining insights from the industrial data had given the opportu-
nity to better address the research to improve the technology. In this
work, machine learning techniques are shown as important supporting
tools to explain the raw data obtained directly from complex industrial
processes. The results showed that it is possible to obtain rules from the
data and that they can be used by experts for the construction of a
knowledge base. Also a novel method is defined for improving the ef-
ficiency in the generation of rules using unsupervised learning techni-
ques (mineralogical groups), supervised learning (decision trees) and
selection of variables to reduce the complexity of the models generated.

The development of a decision making support system offers the
frame to transfer the obtained knowledge and transform it into re-
commendations to assist the plant metallurgist and leaching operator
with the control of the heap to maintain it at optimum bioleaching
conditions and therefore maximizing leaching kinetics and copper re-
covery. The DSS developed with its operational recommendations is
actually under assessment at industrial level in the bioheap process at
Escondida mine. Because of the evolution of the bioleaching process,
the DSS must be continuously updated and improved.

Supplementary data to this article can be found online at https://

doi.org/10.1016/j.hydromet.2018.08.009.
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